If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=10^2
We move all terms to the left:
2x^2-(10^2)=0
We add all the numbers together, and all the variables
2x^2-100=0
a = 2; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·2·(-100)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{2}}{2*2}=\frac{0-20\sqrt{2}}{4} =-\frac{20\sqrt{2}}{4} =-5\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{2}}{2*2}=\frac{0+20\sqrt{2}}{4} =\frac{20\sqrt{2}}{4} =5\sqrt{2} $
| –8x+3=–29 | | −16x^2=28x | | 4x+4+2x+20=180 | | 4x+4+2x+20=189 | | 320=140+(20-2x)(16-2x) | | 3y/3y+9+5y−11/2y+6=7y+5/y+3 | | 8x-60+4x+20=180 | | 27=v+ | | 130=y(0.6) | | 50=y(0.6) | | t+.95=1.25 | | 45=y(0.6) | | 14x+2=3x+8+11x | | 12x-6=(18x+11) | | v+2/3=1/5 | | 150=y(0.6) | | 120=y(0.6) | | 8/3=-2x^2(x+1) | | 7g^2–2g–10=0 | | 8x+17=6x | | 4(-4t^2+t+60)=0 | | t=-16t^2+12 | | 20=y(0.6) | | t=-16t^2 | | 6x-12+x+18=90 | | e/7+5=-5 | | 16t(-t+4)=0 | | C=5/9x(98.6-32) | | x-2=5+3 | | 36+x+x+x=90 | | 3x^2+x=-2x-7 | | 2x-1+5x+8=180 |